Convergence properties of generalized Benders decompositions
نویسندگان
چکیده
This paper addresses two major issues related to the convergence of generalized Benders decomposition which is an algorithm for the solution of mixed integer linear and nonlinear programming problems. First, it is proved that a mixed integer nonlinear programming formulation with zero nonlinear programming relaxation gap requires only one Benders cut in order to converge, namely the cut corresponding to the optimal solution. This property indicates the importance of developing tight formulations for integer programs. Second, it is demonstrated that the application of generalized Benders decomposition to nonconvex problems does not always lead to the global optimum for these problems; it may not even lead to a local optimum. It is shown that this property follows from the fact that every local optimum of a nonlinear program gives rise to a local optimum in the projected problem of Benders. Examples are given to illustrate the properties.
منابع مشابه
A Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases
The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...
متن کاملComputational strategies for improved MINLP algorithms
Abstract: In order to improve the efficiency for solving MINLP problems, we present in this paper three computational strategies. These include multiple-generation cuts, hybrid methods and partial surrogate cuts for the Outer Approximation and Generalized Benders Decomposition. The properties and convergence of the strategies are analyzed. Five new MINLP algorithms are described based on the pr...
متن کاملGeneralized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کاملExistence and Iterative Approximations of Solution for Generalized Yosida Approximation Operator
In this paper, we introduce and study a generalized Yosida approximation operator associated to H(·, ·)-co-accretive operator and discuss some of its properties. Using the concept of graph convergence and resolvent operator, we establish the convergence for generalized Yosida approximation operator. Also, we show an equivalence between graph convergence for H(·, ·)-co-accretive operator and gen...
متن کاملL-shaped decomposition of two-stage stochastic programs with integer recourse
We consider two-stage stochastic programming problems with integer recourse. The L-shaped method of stochastic linear programming is generalized to these problems by using generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined via general duality theory and can be generated when the second stage problem is solved by standard techniques. Finite convergence of...
متن کامل